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A detailed equation is proposed for the force exerted on a sphere that accelerates 
rectilinearly in an otherwise still fluid. In addition to the buoyant force, the fluid 
exerts forces that depend on (a)  the velocity of the sphere, ( b )  the acceleration of 
the sphere and ( c )  the history of the motion. The equation reduces to the known 
theoretical solution for low velocity and large acceleration. 

The proposed equation was tested and found most satisfactory for a particular 
case in which the velocity was not small, viz. the case of simple harmonic motion 
along a straight line. The acceleration (added mass) and history coefficients in 
the equation were evaluated experimentally. They were found to depend on the 
ratio of the convective acceleration to the local acceleration as measured by the 
parameter V2/aD, in which V ,  a and D are the velocity, acceleration and dia- 
meter of the sphere, respectively. The Reynolds numbers varied from 0 to 62 
during the tests. 

1. Introduction 
This paper presents a small part of the answer to a very old and complex prob- 

lem of fluid mechanics, the problem of the dynamic force exerted by a real fluid 
on a submerged object if the relative velocities between the two change with 
time. The general situations in which both the fluid and the body move are very 
complicated. The motion of the fluid at a considerable distance from the body may 
be curved, converging and unsteady and the motion of a body relative to a fixed 
reference point may be very irregular. In  this paper we are concerned with the 
rectilinear acceleration of a sphere in an otherwise quiet and viscous fluid. 

Stokes (1851) investigated the simple harmonic and rectilinear oscillations 
of a sphere, a cylinder and an infinitely long flat plate in a viscous fluid. He omitted 
the convective acceleration terms in the Navier-Stokes equations and derived 
the expressions for forces exerted by the fluid on these objects. Each expression 
consists of two terms, one involving the acceleration and the other the velocity. 
Both terms include viscosity. 

Later Basset (1888), Boussinesq (1885) and Oseen (1927) studied the recti- 
linear motion of a sphere which has a rapid but arbitrary acceleration in a 
viscous fluid. They also omitted the convective acceleration terms in the Navier- 
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Stokes equations in deriving their expression for force. They agree that the force 
on the sphere depends not only on its instantaneous velocity and acceleration, 
but also on an integral term which represents the effect of its entire history of 
acceleration. Each effect is represented by a separate term. It is important to 
note that the acceleration term does not include viscosity. In  fact, this term is 
the same as the expression for force derived in an inviscid and irrotational flow. 

If the force expression derived by Basset (1888), Boussinesq (1885) and Oseen 
(1927) is applied to an oscillating sphere and if the integral term is calculated for 
the oscillations after a long period of time from the start of the motion, the same 
expression found by Stokes (1851) can be obtained. This shows that, in a force 
expression valid for a specific motion, the quantity whichismultiplied byaccelera- 
tion does not necessarily represent the added mass as defined for an inviscid and 
irrotational motion. 

The force expression derived by Basset (1888), Boussinesq (1885) and Oseen 
(1927) is valid only for a slowly moving but rapidly accelerating sphere. The 
authors have attempted to extend this work to include the effect of the con- 
vective acceleration terms and propose a new force expression for a rectilinear 
and unrestricted arbitrary motion of a sphere. 

2. The problem of rectilinear motion of a sphere 

(1927) is 
The expression for force derived by Basset (1888), Boussinesq (1885) and Oseen 

( 1 )  - F = GnRp V + +($nR3) pa + 6R2(77pp)& ___ st 0 ( t  a(t ') - t')& 

in which ,u is the viscosity of the fluid and V ,  a and R are the velocity, accelera- 
tion and radius of the sphere, respectively. The first term on the right will be 
denoted as - Fv. It is equal and opposite to the steady-state viscous drag on the 
sphere. The second term is -FA and has the same magnitude as the resistance 
of an accelerating sphere in irrotational motion. The third term will be denoted 
as - FH, the effect of the history of acceleration. Since the convective accelera- 
tion terms are disregarded, the motion of the sphere is confined to rapid accelera- 
tions and low velocities. 

Now (1)  will be extended to derive a new equation applicable to situations in 
which the convective acceleration is important. Let us consider the harmonic 
oscillation of a sphere in an otherwise still fluid (figure 1). 

The sphere starts from rest at  location 1 where t = 0. An instant later the 
velocity is almost zero and the local accelerations of the fluid particles predomi- 
nate. At this time the force on the sphere can be expressed in added mass form 
as 

in which C, is the added-mass coefficient. C, is to be determined by experiment, 
and it may be a function of dimensionless combinations derived by dimensional 
analysis. 

Next consider location 2 ,  where the velocity is a maximum. Since the accelera- 
tion is zero, the force according to (2) is zero for finite values of C,. But experi- 

-FA = C,+nR3pa, ( 2 )  
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ments show that the force is not zero. According to dimensional reasoning, it can 

(3) 
be written as 

in which Cv is the velocity or drag coefficient. C, also needs to be determined 
experimentally as a function of pertinent dimensionless parameters. 

Now one more step will be taken. Suppose that the sphere started at  location 1 , 
completed its cycle, came back to location 1, and started its new cycle. It will 
be noticed that at  this time the force acting on the sphere is different from the 
force recorded initially, although the velocities and accelerations are the same 
in both instances. This shows that a third term showing the effect of the history 

- F,  = $ C V T R ~ ~ I  Vl 8, 

0 
Location 1 Location 2 Location 3 

v = o  v*o v = o  
a + o  a=O 4 +o 

FIGURE 1. Simple harmonic motion. 

of the motion must be included in the expression for the force. The need for a 
third term also is evident in case of a rapid stop. In  this case both the acceleration 
and velocity will be zero, but some force will act on the sphere due to the residual 
velocity of the fluid. This force will diminish rapidly as time elapses, of course, 
but its presence shows that some history term is required. 

The history force - FH may be expressed by multiplying the last term of (1) 
by an undetermined coefficient C,, whose value may depend on dimensionless 
combinations involving acceleration, velocity and time. If this is done and the 
three forces are added the result is 

Let us now compare equations (4) and (1) term by term. If the coefficients in 
(4) are to be correct when the acceleration is large and the velocity small, the 
terms must be identical to those in (1). For this limiting case, the first term 
on the right of (1) is the steady-state drag, and hence the first term on the right 
of ( 1 )  must represent the same thing. Moreover, if, after some arbitrary motion, 
the acceleration remains zero for a long time, (4) must reduce to the steady- 
state drag no matter what the velocity. Both these requirements are met if we 
choose C, in (4) as the steady-state drag coefficient for a sphere. 

But the question arises as to whether or not such a choice can be made. Sup- 
pose, for example, that in some sort of oscillatory motion the acceleration and the 
acceleration integral terms both were zero at a given instant but the velocity 
were not. Then the velocity coefficient could not be chosen; it would be fixed by 
the instantaneous force (as measured experimentally) and velocity. On the 
other hand, for simple harmonic motion, the integral and the acceleration do not 
go to zero simultaneously and Cv may be chosen to fit the previously mentioned 
requirements. Hence, it will be assumed in what follows that Cv is the well- 
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known steady-state drag coefficient, a function of the Reynolds number com- 
puted from the instantaneous velocity. 

Continuing with the comparison of (4) and (1) it can be seen next that the 
coefficient C, must equal Q where the velocity is small compared to the 
acceleration. As stated before, this is the value of the added-mass coefficient 
for irrotational motion, and one would expect it to be correct at least at the 
beginning of motion in a real fluid. 

Finally, it  must be noted that CH should equal 6 for large accelerations and 
small velocities. Having chosen Crr, neither C, or C, is arbitrary but must be 
determined by experiment. 

Since (1) does not permit convective acceleration to be significant, it  is certain 
that the coefficients C, and C, in (4) will depend on its magnitude. To form 
dimensionless parameters that involve convective acceleration and are physically 
significant, one may write force ratios for a unit cube as follows: 

( 5 a )  

where D is the diameter of the sphere. 
The first ratio is the well-known Reynolds number Re. If the forces due to 

convective acceleration are small compared to the shear stress, the Reynolds 
number will be small. For a given viscosity, a small Reynolds number can be 
obtained with either a small velocity or a small diameter of sphere. Experi- 
ments made for steady-state conditions indicate that, if Re < 1, the contribution 
of the convective acceleration is not significant. 

The second ratio will be called the acceleration number and denoted as Ac. 
This number was used by Iversen & Balent (1951) and Keim (1956)) who derived 
it by dimensional reasoning only. 

If the forces due to convective acceleration are small compared to the forces 
due to local acceleration, the acceleration number will be small. A small accelera- 
tion number can be obtained if the velocity of the sphere is small, its aceelerahion 
is high and its diameter is large. There should be a limit of the acceleration 
number below which the contribution of the convective acceleration can be 
disregarded. 

Thus, if the density and the viscosity of the fluid and the motion of the sphere 
are given, there may be a range in which (1) can be applied. In this range 
Re < 1 and the acceleration number is below a certain limit to be determined. 

The variations of the coefficients CA and C, with the Reynolds number and the 
acceleration number have been determined by the first author for 69 different 
simple harmonic motions. The values of C, and C, were determined at  wt = in 
and wt = an and in, respectively, in which w is the angular frequency. These 
values were used along with the published values of err to calculate the forces 
acting on the sphere over the entire cycle of the motion. The calculated forces 

20 Fluid Mech. 18 



306 Fuat Odar and Wallis S .  Hamilton 

agree very well with the measured forces. Before going into the details of the 
tests, we shall describe briefly the equipment used to produce the simple harmonic 
motions. 

3. Equipment and tests 
A sketch of the equipment used to impart simple harmonic motion to a sphere 

in a tank full of oil is shown in figure 2. 

Variable drive motor 

3 ft. x 3 ft. x 3 ft. 

FIGURE 2.  Schematic diagram of apparatus for measurement of force 
on reciprocating sphere. 

As the motor turns the flywheel and timing wheel, the plate, rod and sphere 
reciprocate. The speed of the flywheel can be set between 17 and 159r.p.m. 
The flywheel serves to dampen the vibrations produced by the variable drive. 
The sliding block is attached to the timing wheel with a crank pin, and the loca- 
tion of the pin can be shifted along the radius of the wheel. Thus the amplitude 
of the harmonic motion, A,, can be varied. By combining different speeds and 
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amplitudes, it  is possible to produce a large number of different simple harmonic 
motions. 

The force exerted on the sphere and the speed of the motor were measured by 
transducers utilizing strain gauges. The amplifier and the recording instrument 
used were very sensitive. For example, heavy footsteps near the equipment 
could disturb the measurements, although the floor was concrete. Disturbances 
caused by machinery in other parts of the building or by passing trucks were 
noticed by the authors, but the amplitude of these disturbances was very small. 
The data were obtained when all other equipment in the laboratory was quiet. 

The amplifier and the recording instrument were manufactured by the 
Consolidated Electrodynamics Corporation. The technique for recording is 
based on the rotation of a loop of wire placed in a magnetic field. A change in the 
current passing through this wire causes the loop to rotate, and light beam 
reflected from a mirror attached to the loop travels across photographic paper 
which is moving at  a certain speed. In  this manner, the variation of current 
passing through the loop is recorded. The loop can oscillate at frequencies up 
to 3000 CIS. 

A second light beam is projected on the photographic paper through a synchro- 
nized shutter a t  0.1 sec intervals. This light beam produces transverse lines on 
the photographic paper. The distance measured between ten of these lines gives 
the average speed of the photographic paper accurately. The speed of travel of 
the photographic paper can be set to a selected value by means of a gear system. 
The paper is developed just after exposure. 

The speed of the timing wheel was measured as follows. Two strain gauges 
were cemented to the upper surface of a cantilever beam and two to the lower sur- 
face, They provided four active arms of a Wheatstone bridge and permitted 
measurement of tensional and compressive forces acting on the lever. One end 
of this beam touched the periphery of the timing wheel and was pressed against it. 
The bridge was balanced under this pressure. On the periphery of the timing 
wheel, recesses were made at  intervals of in rad. As the recesses went by, the end 
of the beam dropped into them and the change in strain caused an unbalanced 
current in the Wheatstone bridge. This unbalanced current was amplified and 
sent to another loop of wire placed in the magnetic field. As a result, a third light 
beam made a mark on the photographic paper sixteen times per revolution. 
Thus, since the rate of travel of the photographic paper was known, the speed 
of the timing wheel also could be determined. 

The transducer for measuring the forces exerted on the sphere was located 
inside the sphere and consisted of a small brass frame with strain gauges glued on it. 

As shown in figure 3 the sphere was glued to the bases of the frame and i t  was 
not in contact with the reciprocating tube. In  effect the two vertical members 
of the frame were pinned to the tube a t  their centres. Since the tube passed 
through these members, most of their width was occupied by the hole, and the 
result was practically a centre hinge in each. Thus they behaved like four canti- 
lever beams. 

Again, the strain gauges constituted the four active resistances of a Wheat- 
stone bridge. The bridge was balanced when the sphere was not in motion. When 
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it moved, the beams deformed, the resistances of the strain gauges changed, and 
the balance of the bridge was disturbed. The resulting current, which represented 
the force exerted by the rod on the sphere and its contents, was amplified and 
recorded on the photographic paper as previously explained. 

The transverse displacement of the trace of the light beam on the photographic 
paper was calibrated in units of force, using 5 g intervals. Within these intervals 
the variation of displacement with force was assumed to be linear. When the 
amplifier was set a t  attenuation I ,  its highest sensitivity, 5 g caused a displace- 
ment of 0.09 in. 

Brass base 

Glue (Eastman 910) 

on 

A 4.015 in. brass beam Section A-A 

FIGURE 3. Force transducer. 

The force transducer was not suitable for measuring rapid changes in force 
because of its low natural frequency--30 to 40 c/s-but it was satisfactory for 
the tests conducted. The low frequency stemmed from the need to measure 
small forces accurately with ordinary strain gauges and the comparatively large 
mass of the oil-filled sphere. To get the required sensitivity the brass cantilevers 
were made only 0.015in. thick. 

At points of the cycle where the force exerted on the reciprocating plate by 
the block and crankpin reversed, a small knock was practically unavoidable 
because of the slight clearance in the crankpin and main shaft bearings and the 
clearance between the block and the sides of the slot in the plate. Because of the 
knock, the sphere started to oscillate a t  its natural frequency twice during each 
cycle. This, of course superimposed unwanted vibrations on the photographic 
record of the periodic force being measured. Considerable care in manufacturing 
the slot and fitting the block to it was required to prevent the vibrations from 
interfering with the accuracy of the tests. However, for most runs some vibra- 
tions were unavoidable and a smooth curve was drawn through the mid-points 
of these recorded vibrations. A typical example is shown in figure 4. 

The photographic record was measured. Tables of force us time for the 
various runs were constructed. The scale of the record was such that a human 
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error in measurement of 0.01 in. in the transverse direction caused an error in 
force of from 4 g depending on the attenuation used in the amplifier. Similarly, 
an error of 0.01 in. in the longitudinal direction would cause up to 5g  error in 
force when the speed was high. As may be seen from tables 1 to 57 the measured 
forces varied from about - 250 g to + 250 g. Hence, it was necessary to scale 
the photographic record with great care to obtain reasonable accuracy. Because 

Run No. 57 

1 
\ 
\ 
\ 

1 I 

, 

Smoothed curve 

Recorded curve 

/ 

I 
I 

(\ I 
++! 

I 

-t i 

\ 
\ 
\ 
\ 
\ 
\ 

i 
FIGURE 4. Force on reciprocating sphere. 

the attenuation of the amplifier and the paper speed were adjustable, the large 
errors occurred for runs in which the peak force were large. Thus, judging from 
the consistency of the results, a satisfactory percentage accuracy was achieved. 

The viscosity and the density of the oil was 1 . 6 5 ~  10-21b.sec/ft.2 and 
1-725 ~lug/f t .~ ,  respectively. The tests were conducted for amplitudes A ,  = 1, 
2 , s  and 4in. and for a wide range of speeds. A run was made by selecting a certain 
A ,  and setting the speed of the motor to a certain value. During the tests the 
Reynolds numbers varied from 0 to 62. The acceleration number varied from 0 
to 00 during each cycle. 

The force measured by the transducer was that required to accelerate the 
mass of the sphere and the oil and brass parts inside it plus the force exerted on 

f The detailed tables of data are being held in the Editors' files and will be loaned t o  
the reader on request. The same tables are also included in Research Report 128 (in 
preparation), U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, 
N.H., U.S.A. and in the Ph.D. dissertation of Odar (1962). 
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the sphere by the fluid external to it. In  order to find the effective accelerated 
mass, the sphere was filled with oil, reciprocated in air, and the force recorded. 
Since the clearance between the shell of the sphere and the reciprocating tube was 
very small, there was no noticeable oil leakage. The shell of the sphere was 
translucent and any free surface inside the sphere could be observed. Using the 
force record and the known accelerations that went with it, the effective mass of 
the sphere and its contents was calculated to be 148g. This figure was checked 
roughly by holding the tube in the vertical position. In this position, however, 
the oil started to leak immediately and the weight was down to 145 g by the time 
a measurement could be made. 

4. Evaluation of the coefficients 
The motion of the sphere can be expressed as 

x = A,COSW~, 
V = -A,wsinwt, 
a = -A,w2coswt. 

If these quantities are introduced in (4) 

F = C,nR2 w21 sin wt  I sin wt + CA +nR3pA, w2 cos wt 

is obtained. The integral's lower limit, to, is the time at which the motion starts. 
For convenience, the oscillations after a long period of time from the start of the 
motion are considered. Thus, the lower limit of the integral in (7) is changed to 
- m. The value of the integral becomes 

A, w(  +nw)* (cos ot + sin wt) .  

The forces due to the acceleration, velocity, history and inertia are denoted 
by FA, F,, FH and FI, respectively. Thus 

FA = CA 97~R~pAoo~ COS wt, 

FT7 = CvnR2&w2Ai[sinwtl sinwt, ( 8 b )  
F' = CHnR2(&)' A,wt(sinwt + cos wt), ( 8 4  
FI = Meif A , d  cos wt. ( 8 4  

As stated previously, C, is assumed to be the steady-state drag coefficient de- 
pendent on the Reynolds number calculated by using instantaneous velocity. 
In  what follows, values of C, will be taken from Lapple (1951), table 1. 

In  order to find the variation of CA with the Reynolds number or the accelera- 
tion number, or both, the location where FH = 0 is chosen. According to (Sc), 
o t  = in where FH = 0. At this location the force measured by the transducer is 

F = FA+Fv+FI. 

Hence, calculating F, and FI, and using the known total force at location wt = in, 
FA and consequently CA can be evaluated. This was done. The tests showed that 
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CA changes with the acceleration number only. The variation of CA with the 
acceleration number is shown in figure 5. Each of the four plotted points is the 
average CA calculated from at least ten runs a t  different values of the Reynolds 
number. 

Using these plotted values of C,, the total force at  location wt = $n was then 
calculated for all runs, as shown in table l,t to check the accuracy of the C, 
values and to illustrate that they do not depend on Re. The consistency of the 
data and their independence of Re may be judged by comparing the total force 
so calculated with the measured force (last two columns). A measured force 
represents the average of two measurements at an interval of 7 ~ .  It is striking that, 
although the values of C, used in the C, calculations are functions of the Reynolds 
number, the values of C, themselves do not depend on Re. 

The next step is to evaluate CH, and a logical beginning is to calculate it for 
points in the cycle where the acceleration is zero and the history force conse- 
quently is the measured force F minus Fv. The acceleration is zero at wt = an, 
and calculations at this point for a number of runs gave a consistent value of 
C,, = 2.88. The value did not depend on Re, but possible dependence on AG could 
not be determined since Ac is infinite for all occasions when the acceleration is 
zero. A comparison of measured and calculated forces using C, = 2.88 is shown 
for all the runs in table 2.t  

Because Cv has been chosen, we know the value of the sum FA+ FH at all 
points of a cple.  We have so far computed CA at $ 7 ~  and C, at an. But now it is 
necessary to make a logical decision as to how to divide the sum FA + FH into 
separate parts for locations on the cycle where neither is clearly zero. Since 
C, already is known as a function of the acceleration number at the location 
wt = 271, it  is most convenient t o  make these values of C, (shown on figure 5) 
hold throughout the cycle. If this is done, C, becomes determinate at all points. 
Then the only remaining question is whether or not C,, computed on this basis, 
will show a unique dependence on Re and Ac for different runs and different 
locations on the cycle. 

To investigate this question, a place on the cycle where the absolute value of 
the term (coswt+sinwt) is a maximum was chosen, namely, wt = $7~. Then 
F,, FA and FI were calculated according to equations (8a ,  b,  d )  and, using the 
measured force from a variety of runs, C, was determined from ( 8 c ) .  It was 
found that C, changed with the acceleration number only. The variation of C, 
with the acceleration number is shown in figure 5. Each of the four points plotted 
is the average CH calculated from a t  least ten runs a t  different values of Re. 

Using these plotted values of C, and the values of CA in figure 5, the total force 
at  location wt = an was then calculated for all the runs, as shown in table 3,t  
to check the accuracy of the C, values and to illustrate that they do not depend 
on Re. The consistency of the data and the independence of Re may be judged by 
comparing the total force as calculatedwiththe measured force (last two columns). 

Next, tentative values of the total force at  intervals of + 7 ~  were calculated to 
see if the values of C, established at  wt = in- by the procedure just described were 
adequate. These values are compared with measured forces in table 4.f- The 

t See footnote p. 309. 
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agreement is excellent, even though some values of CA and CH were taken from 
the dashed portions of the curves. Figure 6 shows an example of the agreement. 

The close match between the tentative computed values of force and the 
measured values shows that the choice of C, was a fortunate one and answers 
the question of whether C, is unique. In  retrospect we now understand that, 

L I I I I 
0 1 .0 2.0 

V2/aD 

FIGURE 5. Variation of C, and C, with Ac = PJaD.  

Run 18 

Measured 
force (g) % : s o "  

N N m N  

1 s o  

0.8 

c.4 
0.6 

0.4 

n 
Calculated force --- I .  

w 
FIGURE 6. Comparison of calculated and measured forces. 
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if the following procedure is adopted, we get values of C,, CA and C, that allow 
us to calculate the force exerted by the oil on the sphere: 

(A) Choose C, as the usual steady-state function of the Reynolds number. 
(B) Calculate C, at wt = in, where F, is zero. 
(C) Apply the C, from (B) for the whole cycle. 
(D) Use choices (A) and (C) to calculate C,. 

The procedure is known to be valid only for the range of the present tests, of 
course. 

A comment on the values of C' and C,, when V and consequently, V2/uD 
are zero, is in order. When V is zero, Fv is zero and the measured force is the 
sum 

Even though the velocity of the sphere is zero, one cannot be certain that (1) 
will apply, because residual motion of the liquid may produce convective accelera- 
tions that have an appreciable effect on force. The question of whether or not it 
does apply was answered affirmatively as follows. Using values of CA and C,, of 
+ and 6, respectively, values of the total force a t  wt = 277 were computed for all 
the runs. A comparison of the computed and measured forces is given in table 5 . t  
The two agree quite well. 

For this reasoil the zero values of the coefficients in figure 5 were plotted as 
8 and 6. 

FA + J& + Fp 

5. Conclusions 

performs steady, rectilinear, harmonic oscillations in the fluid is given by 
Neglecting buoyancy, the force exerted by a fluid on a smooth sphere which 

F = C,nR2$pAtw21sinwt( sinwt+C,$nR3pA,w2coswt 
-kC,nR2($pp)i A,ws(coswt+sinwt). (9) 

The equation applies at  least up to a Reynolds number 2pA,wR/p of 62. 
The coefficients C, and C, are independent of the Reynolds number, but 

depend physically on the importance of the convective acceleration compared 
to the local acceleration, i.e. upon the ratio V2/uD, as shown in figure 5 .  Values of 
C, and C, are experimental except a t  V2/uD = 0. Here they are the theoretical 
values 4 and 6, respectively, from (1)  which is obtained by solving Navier- 
Stokes equations for the conditions where the convective acceleration terms can 
be disregarded. The coefficient C, is the well-known drag coefficient for steady 
translation of a smooth sphere, a function of the Reynolds number. 

Equation (9) is a particular form of an equation devised by the authors to 
express the force on a sphere having arbitrary straight-line motion, namely, 

(4) 

-F = (1)  

- F = $?v~R2pI vl v + CA+~TR~PU + c,,R2(~pp)& 
' 
~- &/. su (t - t')& 

Although it has a rational basis in (1) 

t See footnote p. 309. 
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and is most satisfactory for simple harmonic motion, (4) needs to be tested for 
other rectilinear motions. In  particular, it is desirable to find out if the values of 
C, and C, determined from the present tests are generally useful. 

This paper is based on a dissertation submitted by the first author, Odar 
(1962), to Northwestern University as one of the requirements for the Ph.D. 
degree. The work was supported by the Civil Engineering Department of the 
University and the U.S. Army Cold Regions Research and Engineering Labora- 
tory. The writers are particularly grateful to Dr R. W. Gerdel, Chief of the En- 
vironmental Research Branch, U.S.A. CRREL, who made it possible for the first 
author to undertake this research programme and also thankful to the personnel 
of the Civil Engineering Shop who built the experimental equipment, and to 
Mr R. K. Haugen of U.S.A. CRREL who helped in preparation of the manusoript. 
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